K2 Systems recommendation

Equipotential Bonding and Lightning Protection for PV mounting systems
Content

General notes ... 3

- Basic information .. 3
- Equipotential bonding & earthing .. 4
- TerraGrif earthing components .. 5
- Lightning protection ... 6
- Lightning protection example 1 ... 7
- Lightning protection example 2 ... 8
- Lightning protection example 3 ... 9
- Lightning protection spacing ... 10
- Lightning current capacity of mounting systems 11

Pitched roofs ... 12

- Tiled roof cover ... 12
- Tiled roof cover with the prescribed frame earthing 13
- Corrugated roof covers or trapezoidal metal sheet/sandwich panels with hanger bolts or solar fasteners 14
- Assembly with second rail layer 15
- Trapezoidal metal sheet roof covers with SpeedRail 16
- Trapezoidal metal sheet roof covers with MiniRail 17
- Trapezoidal metal sheet roof covers with MultiRail 18
- Standing seam roof covers .. 19

Flat roofs ... 21

- General notes ... 21
- S-Rock: Equipotential bonding ... 22
- S-Rock: Lightning protection .. 23
- S-Dome 2.0: Equipotential bonding 24
- S-Dome 2.0: Lightning protection 25
- D-Dome 2.0: Equipotential bonding 26
- D-Dome 2.0: Lightning protection 27
- S-Dome Classic: Equipotential bonding and lightning protection 28
- D-Dome Classic: Equipotential bonding and lightning protection 29
- S-Dome V: Equipotential bonding 30
- S-Dome V: Lightning protection .. 31
- D-Dome V: Equipotential bonding 32
- D-Dome V: Lightning protection .. 33

Components ... 34

- TerraGrif types: compatibility and technical data 34
- K2 lightning protection elements .. 34
- General notes ... 35

Notes .. 36
Below you will find recommendations on how equipotential bonding and connections capable of carrying lightning current can be established for different mounting systems from K2 Systems.

K2 Systems GmbH expressly points out that the use of the specified components is only a recommendation. Lightning protection components from other manufacturers can therefore also be used as an alternative.

Existing lightning protection may not be impaired by a PV system. In each case, the lightning protection concept must be coordinated with a lightning protection planning office of a lightning protection specialist.

Lightning protection that is to be established must be designed in such a way that it can fulfil its function even without a PV system.

During the planning and implementation of the connections between the cables and mounting systems, permanently suitable materials must be chosen in order to prevent contact corrosion, taking account of the electrochemical voltage series. The components listed below are required in addition to the mounting system items. Alternatively, additional or different connecting clamps can be purchased directly from specialist suppliers.

It is essential to observe the national and site-specific standards concerning the planning and implementation. We would like to point out that the recommendation was produced on the basis of the German standards.

Recommendations or installation instructions from the module manufacturer must be observed.

There is no standard module frame earthing. There are exceptions if the module manufacturer prescribes frame earthing, which is increasingly the case. We therefore recommend checking the module installation instructions. If necessary, each module frame must be included in the equipotential bonding!

Equipotential bonding must ideally be installed so that modules can be removed from the layout when servicing is required without the equipotential bonding losing its function.
General information

Equipotential bonding & earthing

- If points are conductively interconnected to varying potentials, the potential difference between them is balanced out. The electrical voltage between the points can no longer be measured, thus establishing equipotential bonding.

- The connection of a point on the electrical system to the ground is called earthing. This can fulfill certain tasks, such as
 - Protection against the direct and indirect effect of an electric shock (personal protection).
 - Lightning protection
 - Ensuring electromagnetic compatibility
 - Protective or functional earthing of certain equipment, such as power inverters

- Equipotential bonding and an earthing system complement each other to form an effective protection system

- Equipotential bonding must always be added to PV systems in accordance with VDE 0100. This applies to all conductive and exposed components.
TerraGrif earthing components

- TerraGrif earthing system:
 - Simple and fast module earthing solution for all K2 mounting systems
 - Complies with the earthing provisions in the standards NF C 15-100 and the guide UTE C15-712-1
 - Tested and approved by LCIE Bureau Veritas

- Attention: For technical reasons, a TerraGrif cannot be used again after it has been used once and removed again.

- Please also observe the TerraGrif assembly instructions
 k2-systems.com/en/terragrif

Overview of TerraGrif types

<table>
<thead>
<tr>
<th>K2SZ</th>
<th>U17</th>
<th>K2MI</th>
<th>K2PA</th>
<th>S insertion system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Article number</td>
<td>2001881</td>
<td>2000056</td>
<td>2002649</td>
<td>2000055</td>
</tr>
</tbody>
</table>

- We recommend the TerraGrif U17 for equipotential bonding of the
 - S-Rock
 - S-Dome 2.0 and D-Dome 2.0
 - as well as the S-Dome Classic and D-Dome Classic

First check the geometry of the module frame.
The TerraGrif U17 cannot be used when the underside of the module frame is rounded (see diagram). In this case, we recommend the TerraGrif K2SZ as an alternative for the Dome systems. If you are unclear as to which TerraGrif you need to use, please contact our technical support at the following e-mail address:
service@k2-systems.com
General information

Lightning protection

- A lightning protection system is deemed to be precautions against the adverse effects of lightning strikes on buildings.

- Due to its strong electromagnetic field, the lightning can also indirectly affect electrical cables or metal parts, such as pipes within a building, and cause damage.

- A lightning strike can cause fires.

- A lightning protection system cannot provide absolute protection.

- External lightning protection:
 - External lightning protection provides protection against lightning strikes that would directly hit the system to be protected. It consists of interception devices, lightning conductors (lightning conduction system) and an earthing system.

- Internal lightning protection:
 - The overvoltage protection, which constitutes the internal lightning protection, consists of measures against overvoltage of all kinds. The effects of a lightning strike up to about 1.5 km away are also transferred to installations as well as electrical and electronic systems within the physical structure. Internal lightning protection also protects against effects from the mains.

- Protection of property (objects) and persons
Lightning protection example 1

- If external lightning protection is not available, no lightning protection needs to be established for the PV system.

- The choice of overvoltage protection devices should be made in accordance with DIN EN 62305-33
General information

Lightning protection example 2

- External lightning protection is available, but the spacing “s” can be observed. The system is not integrated!

- Note the requirements for overvoltage protection (mains entry) in accordance with DIN EN 62305-3!

= domestic junction box

= power inverter
Lightning protection example 3

- External lightning protection is available, but the spacing "s" cannot be observed. The system is integrated!
- Note the requirements for overvoltage protection (mains entry & building entry) in accordance with DIN EN 62305-3!

![Diagram of lightning protection system]

- **DJB** = domestic junction box
- **SPD** = Surge Protective Device = overvoltage protection
- **= power inverter**
General information

Lightning protection spacing

Spacing:
- The spacing “s” is calculated using the following formula in accordance with DIN EN 62305-3. It is not a standard value!
- Typical values for “s” are between 30 and 70 cm.
 The empirical formula “s” = 50 cm cannot be used safely!
- Typical error in calculating “s”:
 - The material factor for solid materials on the roof covering is $k_m = 0.5$
 - Software can be used for the calculation, e.g. DEHN Distance Tool
- If the spacing is to be observed, all parts of the PV system must comply with this (modules, frame, cables, earthing))

$$ s = k_i \times \frac{k_c}{k_m} \times l $$

$s =$ spacing

$k_i =$ induction factor (depending on the lightning protection class).

$k_c =$ current distribution coefficient: $k_c = \frac{0.3}{2\pi} + 0.1 + 0.2 \times \sqrt{\frac{l_m}{h}}$

$k_m =$ material factor: insulation properties of the environment

$l_m =$ distance from the point of proximity, usually the distance to the foundations (“minimum distance”)

** Literary reference for the calculation: DEHN Lightning Planner, Wagner & Co. Lightning Protection Guide **
Lightning current capacity of mounting systems

- If a mounting system is integrated into a building’s existing external lightning protection, the connection to the mounting system must be designed in such a way that it is capable of carrying lightning current. However, as the mounting system is not used as a power output, it does not need to be capable of carrying lightning current because the existing lightning protection takes on this function.

- The mounting system needs to be capable of carrying lightning current if the mounting system replaces part of the external lightning protection.

- It is essential that the planning to integrate the system into the existing external lightning protection and therefore also the number of connections for the external lightning must be carried out by a lightning protection specialist.

- It is important to ensure that the power input and output are designed with different cross-sections depending on the function.
 - We recommend a minimum cross-section of $\geq 6 \text{ mm}^2$ copper or $\geq 16 \text{ mm}^2$ aluminium for the electrical connection of the equipotential bonding.
 - We recommend a minimum cross-section of $\geq 16 \text{ mm}^2$ copper or $\geq 25 \text{ mm}^2$ aluminium for the electrical connection to the lightning protection.
Pitched roofs
Tiled roof cover

Lightning protection and equipotential bonding
- We recommend establishing the connection of the rails in each module block with a round aluminium wire (≥ 16 mm²).
- If necessary, the connection with a lightning protection clamp and round aluminium cable can be designed in such a way that it is capable of carrying lightning current (≥ 25 mm² round aluminium wire).
- The conductive connection must be checked and, if necessary, the oxide layer of aluminium must be sanded.
- Only use permanently suitable cable lugs for the connection of the equipotential bonding, taking account of the electrochemical voltage series.
- Module frame earthing is not required in this case.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 Underlay plate

(A) Connection of the equipotential bonding cable as alternative lightning protection
Tiled roof cover with the prescribed frame earthing

Lightning protection and equipotential bonding
- If the module manufacturer prescribes frame earthing, we recommend using the TerraGrif.
- The TerraGrifs are each positioned on the left and right under the module clamp.
- You need at least one TerraGrif per module.
- Please also observe the TerraGrif assembly instructions k2-systems.com/en/terragrif

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- TerraGrif K2SZ

(A) Connection of the equipotential bonding cable as alternative lightning protection
Corrugated roof covers or trapezoidal metal sheet/sandwich panels with hanger bolts or solar fasteners

![Diagram](image)

(A) Connection of the equipotential bonding cable as alternative lightning protection

Lightning protection and equipotential bonding
- The mounting procedure is the same as for a tiled roof when using hanger bolts or solar fasteners.
- We recommend establishing the connection of the rails in each module block with a round aluminium wire (≥ 16 mm²).
- If necessary, the connection with a lightning protection clamp and round aluminium cable can be designed in such a way that it is capable of carrying lightning current (≥ 25 mm² round aluminium wire).
- The conductive connection of the rails must be observed with a two-layer system.
- A TerraGrif is used as shown in the diagram depending on the requirement for module frame earthing.
- If module frame earthing is prescribed, you need one TerraGrif per module.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- If necessary, TerraGrif K2SZ
Assembly with second rail layer

Lightning protection and equipotential bonding
- An additional conductive connection of the rails is not required in a cross-bracing or two-layer rail system. However, the electrical connection of the rail positions must be ensured by removing the oxide layer on the cross struts of the rails.
- A TerraGrif is used as shown in the diagram depending on the requirement for module frame earthing.
- If module frame earthing is prescribed, you need one TerraGrif per module.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8 × 30
- K2 underlay plate
- If necessary, TerraGrif K2SZ
Trapezoidal metal sheet roof covers with SpeedRail

Lightning protection and equipotential bonding

- With SpeedRail systems, there is no conductive connection via the trapezoidal metal sheet to the rails just like with a tiled roof.
- We recommend establishing the connection of the rails in each module block with a round aluminium wire (≥ 16 mm²).
- If necessary, the connection with a lightning protection clamp and round aluminium cable can be designed in such a way that it is capable of carrying lightning current (≥ 25 mm² round aluminium wire).
- A TerraGrif is used as shown in the diagram depending on the requirement for module frame earthing.

Materials needed:

- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- If necessary, TerraGrif K2SZ

(A) Connection of the equipotential bonding cable as alternative lightning protection
The trapezoidal sheets must be conductively connected to each other!

(A) Connection of the equipotential bonding cable as alternative lightning protection

Lightning protection and equipotential bonding

- The drill holes in the MiniRail are chosen in such a way that the screws included in the set are purposefully worked into the aluminium to create an electrical connection between the metal sheet and the MiniRail.
- We therefore recommend adding equipotential bonding to the trapezoidal sheets. Make sure that the individual trapezoidal profiles are also electrically connected to each other.
- This ensures the equipotential bonding via the trapezoidal metal sheet.
- A TerraGrif is used as shown in the diagram depending on the requirement for module frame earthing.
- For a connection to the lightning protection, all MiniRail sets must be connected in such a way that they are capable of carrying lightning current. We recommend observing the spacing to the existing lightning protection!

Materials needed:
If necessary, TerraGrif K2MI
Materials needed:
If necessary, TerraGrif K2SZ

Lightning protection and equipotential bonding
- The drill holes in the MultiRail are chosen in such a way that the screws included in the set are purposefully worked into the aluminium to create an electrical connection between the metal sheet and the MultiRail.
- We therefore recommend adding equipotential bonding to the trapezoidal sheets. Make sure that the individual trapezoidal profiles are also electrically connected to each other.
- This ensures the equipotential bonding via the trapezoidal metal sheet.
- For a connection to the lightning protection, all MultiRail sets must be connected in such a way that they are capable of carrying lightning current. We therefore recommend observing the spacing to the existing lightning protection!
- A TerraGrif is used as shown in the diagram depending on the requirement for module frame earthing.
Standing seam roof covers

Lightning protection and equipotential bonding

- An electrical connection via the roof sheeting cannot be ensured with standing seam roofs. Too many types of roof sheeting are surface-coated.
- We recommend establishing the connection of the rails in each module block with a round aluminium wire (≥ 16 mm²).
- If necessary, the connection with a lightning protection clamp and round aluminium cable can be designed in such a way that it is capable of carrying lightning current (≥ 25 mm² round aluminium wire).
- The individual module blocks can be connected to each other in the same way.
- A TerraGrif is used as shown in the diagram depending on the requirement for module frame earthing.
- If module frame earthing is prescribed, you need one TerraGrif per module.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- If necessary, TerraGrif K2SZ
We recommend using round aluminium wire for the connection to individual module blocks and the connection between each other.

The connection (A) shows the possible connection point on the building's equipotential bonding!
Equipotential bonding in the module direction is ensured via the windbreaker / wind deflector plate.

Equipotential bonding in the rail direction can be established with round aluminium wire or a TerraGrif.

If you are using a round aluminium wire, this can be fastened to the prefabricated drill holes (square) with flexible universal earthing clamps or alternatively with K2 lightning protection clamps. The thermal expansion in the round aluminium wire can be avoided by creating loops.

If you are using a TerraGrif, you need the type U17. Assemble the U17 according to the TerraGrif assembly instructions.

Both solutions can also be combined.

Make sure that all modules are integrated into the equipotential bonding when there are gaps in the module layout.

Make sure that the “S-Rock front” modules are connected to a TerraGrif.

Module frame earthing is established if required. Then you also need a TerraGrif U17 for all other modules.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- If necessary, TerraGrif U17
Should the system be integrated into existing lightning protection, the connection to the mounting system must be capable of carrying lightning current. The connection within the sub arrays in existing external building lightning protection does not need to be designed in such a way that it is capable of carrying lightning current.

It is essential that the planning to integrate the system into the existing external lightning protection and therefore also the number of connections for the external lightning must be carried out by a lightning protection specialist. We recommend using a round aluminium wire for the power input and output (≥ 25 mm²).

Alternatively, we recommend observing the spacing.

In addition to the lightning protection, equipotential bonding must be established for all components.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- TerraGrif U17
Equipotential bonding is established with round aluminium wire, or alternatively with TerraGrif, in the rail direction.
If you are using a round aluminium wire, this can be fastened with flexible universal earthing clamps or alternatively with K2 lighting protection clamps. The thermal expansion in the round aluminium wire can be avoided by creating loops.
Equipotential bonding in the module direction of the “S-Dome centre and end rails” is ensured via the windbreaker/wind deflector plate.
Make sure that the “S-Dome front” modules are connected! We recommend connecting the front with a round aluminium wire, or alternatively with a TerraGrif.
Make sure that all modules are integrated into the equipotential bonding when there are gaps in the module layout.
A TerraGrif is used as shown in the diagram depending on the requirement for module frame earthing. We recommend one TerraGrif U17/module or a K2SZ/module.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- If necessary, TerraGrif U17 (alternatively K2SZ)
Should the system be integrated into existing lightning protection, the connections to the mounting system must be capable of carrying lightning current. The connection within the sub-arrays in existing external building lightning protection does not need to be designed in such a way that it is capable of carrying lightning current.

It is essential that the planning to integrate the system into the existing external lightning protection and therefore the number of connections for the external lightning must be carried out by a lightning protection specialist. We recommend using a round aluminium wire for the power input and output (≥ 25mm²).

Alternatively, we recommend observing the spacing.

In addition to the lightning protection, equipotential bonding must be established for all components.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- If necessary, TerraGrif U17 (alternatively K2SZ)
D-Dome 2.0: Equipotential bonding

We recommend establishing the equipotential bonding in the rail direction with a TerraGrif.
We recommend using a TerraGrif U17 or K2SZ.
Alternatively, a connection in the rail direction is possible with a round aluminium wire.
We recommend a connection of the base rails with a round aluminium wire for the equipotential bonding in the module direction.
Make sure that all modules are integrated into the equipotential bonding when there are gaps in the module layout.
The use of a TerraGrif then also meets the module frame earthing requirements according to the diagram.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8x30
- K2 Underlay plate
- If necessary, TerraGrif U17 (alternatively K2SZ)
Should the system be integrated into existing lightning protection, the connections to the mounting system must be capable of carrying lightning current. The connection within the sub arrays in existing external building lightning protection does not need to be designed in such a way that it is capable of carrying lightning current.

It is essential that the planning to integrate the system into the existing external lightning protection and therefore also the number of connections for the external lightning must be carried out by a lightning protection specialist. We recommend using a round aluminium wire for the power input and output (≥ 25mm²).

Alternatively, we recommend observing the spacing.

In addition to the lightning protection, equipotential bonding must be established for all components.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 Underlay plate
- TerraGrif U17 (alternatively K2SZ)
S-Dome Classic: Equipotential bonding and lightning protection

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- TerraGrif U17 (alternatively K2SZ)

The base rails are the connections from south to north that are also capable of carrying lightning current.

Equipotential bonding in the module direction in the S-Dome is established via the windbreaker/wind deflector plates.

Alternatively, equipotential bonding can be established with a round aluminium wire (≥ 16mm²).

We recommend a connection capable of carrying lightning current with a round aluminium wire in the module direction (≥ 25mm²) for the power input and output to the lightning protection.

Make sure that all modules are integrated into the equipotential bonding and lightning protection when there are gaps in the module layout.

A connection is established to the module block (power input or output) or between the module blocks.

A TerraGrif is used as shown in the diagram depending on the requirement for module frame earthing. We recommend using one TerraGrif U17/module or a K2SZ/module.
D-Dome Classic: Equipotential bonding and lightning protection

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- If necessary, TerraGrif U17 (alternatively K2SZ)

- Should the system be integrated into existing lightning protection, the connections to the mounting system must be capable of carrying lightning current. The connection within the sub-arrays in existing external building lightning protection does not need to be designed in such a way that it is capable of carrying lightning current.
- It is essential that the planning to integrate the system into the existing external lightning protection and therefore the number of connections for the external lightning must be carried out by a lightning protection specialist. We recommend using a round aluminium wire for the power input and output ($\geq 25\, \text{mm}^2$).
- Alternatively, we recommend observing the spacing.
- In addition to the lightning protection, equipotential bonding must be established for all components.
Equipotential bonding in the module direction is ensured via the windbreaker/wind deflector plate.

We recommend the use of a TerraGrif for the equipotential bonding in the rail direction. The TerraGrif must always be positioned over the gaps in the base rails to provide a conductive bridge between these rails via the module frames.

Make sure that all modules are integrated into the equipotential bonding when there are gaps in the module layout. It may be necessary to use additional TerraGrifs.

Module frame earthing is established if required. Make sure that each module is connected with a TerraGrif.

For the mounting system equipotential bonding you need up to approx. half a TerraGrif multiplied by the number of modules. For the equipotential bonding including the module frame earthing you need approx. one TerraGrif multiplied by the number of modules.

Calculate the reserves for gaps in the module layout.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- TerraGrif K2MI
Should the system be integrated into existing lightning protection, the connections to the mounting system must be capable of carrying lightning current. The connection within the sub-arrays in existing external building lightning protection does not need to be designed in such a way that it is capable of carrying lightning current.

It is essential that the planning to integrate the system into the existing external lightning protection and therefore also the number of connections for the external lightning must be carried out by a lightning protection specialist. We recommend using a round aluminium wire for the power input and output (≥ 25mm²).

Alternatively, we recommend observing the spacing.

In addition to the lightning protection, equipotential bonding must be established for all components.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- TerraGrif K2MI
We recommend the use of a TerraGrif for the equipotential bonding in the rail and module direction. The TerraGrif must always be positioned over the gaps in the base rails to provide a conductive bridge between these rails via the module frames. Make sure that all modules are integrated into the equipotential bonding when there are gaps in the module layout. It may be necessary to use additional TerraGrifs. Module frame earthing is established if required. Make sure that each module is connected with a TerraGrif. For the mounting system equipotential bonding you need up to approx. one TerraGrif multiplied by the number of modules. For the equipotential bonding including the module frame earthing you need approx. 1.5 TerraGrifs multiplied by the number of modules. Calculate the reserves for gaps in the module layout.

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- TerraGrif K2MI
D-Dome V: Lightning protection

Materials needed:
- MK2 slot nut
- Lightning protection clamp
- Round wire
- Cylinder head screw M8×30
- K2 underlay plate
- TerraGrif K2MI

Should the system be integrated into existing lightning protection, the connections to the mounting system must be capable of carrying lightning current. The connection within the sub-arrays in existing external building lightning protection does not need to be designed in such a way that it is capable of carrying lightning current.

It is essential that the planning to integrate the system into the existing external lightning protection and therefore the number of connections for the external lightning must be carried out by a lightning protection specialist. We recommend using a round aluminium wire for the power input and output (≥ 25mm²).

Alternatively, we recommend observing the spacing.

In addition to the lightning protection, equipotential bonding must be established for all components.
Components

TerraGrif types: compatibility and technical data

<table>
<thead>
<tr>
<th>Figure</th>
<th>K2SZ</th>
<th>U17</th>
<th>K2MI</th>
<th>K2PA</th>
<th>S insertion system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility</td>
<td>SingleRail</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>SolidRail</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Insertion rail</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>SpeedRail</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>MiniRail</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>MultiRail</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>S-Rock</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>D-/S-Dome</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>D-/S-Dome V</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Article number</td>
<td>2001881</td>
<td>2000056</td>
<td>2002649</td>
<td>2000055</td>
<td>2002397</td>
</tr>
<tr>
<td>General tolerance</td>
<td>Standard DIN 2095 grade 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet material</td>
<td>Stainless steel 301 TA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>NFA 35573</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight [g]</td>
<td>3.2</td>
<td>1.8</td>
<td>3.6</td>
<td>2.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Dimensions W × H × D [mm]</td>
<td>10 × 16 × 60</td>
<td>20 × 5.8 × 17</td>
<td>40 × 11.7 × 36</td>
<td>10 × 31.7 × 12</td>
<td>10 × 13.5 × 21</td>
</tr>
<tr>
<td>Material strength [mm]</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- • Compatible
- ◦ Not tested
- ○ Not compatible

* Only for landscape assembly with AddOn.

K2 lightning protection elements

K2 cylinder head screw with under head serration
- M8x30 DIN EN ISO 4762
- Sheet material: Stainless steel A2, SW 6 mm

K2 cylinder head screw with under head serration 2001730

MK2 slot nut with mounting clip
- Sheet material: Stainless steel and polyamide

MK2 slot nut with mounting clip 1001643

K2 lightning protection clamp multi, partially assembled
- Sheet material: Aluminium

K2 lightning protection clamp multi, partially assembled 1003151

K2 Underlay plate
- Sheet material: Aluminium

K2 Underlay plate 1000789
General notes

Different components are needed to connect the mounting system to existing lightning protection. We recommend using suitable components for the lightning protection as required. The connections must be permanently suitable when connecting different materials, taking account of the electrochemical voltage series:

- Cross connections
- Parallel connections
- Connections
Thank you for choosing K2 components.

Systems from K2 Systems are quick and easy to assemble. We hope that these instructions have been of help to you. Please do not hesitate to contact us if you have any suggestions, questions or ideas for improvements. All contact details can be found at:

- www.k2-systems.com/en/contact
- Service hotline: +49 (0)7159 42059-0

German law applies to the exclusion of the UN Convention on Contracts for the Sales of Goods. The place of jurisdiction is Stuttgart.

Our General Terms and Conditions of Delivery apply and can be found at: www.k2-systems.com